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Arecently developed nonlinear approach is adapted andused to predict crack initiation in stringer terminations of

discretely assembled composite panels made from skin and stiffeners. A linear elastic fracture mechanics based

submodel is used to simulate the crack initiation in the critical regions and the influence of ply drop-off is captured.

The von Kármán formulation for moderately large deflections in plates is used to capture the nonlinear structural

behavior; three-dimensional assemblies are schematized and the effect of eccentricity is included in the simulation.

An optimumdesign criterion is sought and basic guidelines for good design are provided. Furthermore, amethod for

preliminary assessment of structural strength is proposed and predictions are validated against detailed nonlinear

finite element analysis.

Nomenclature

CM = bending moment constant
CN = in-plane load constant
Efe = equivalent elastic modulus of tapered region of

foot with ply drop-off
e = neutral plane function
ei = generalized coordinates of the neutral plane

function
GIC = critical strain energy release rate for mode I
GIIC = critical strain energy release rate for mode II
GIN , GIM = local strain energy release rate contribution upon

mode I due to in-plane loads and bending
moments

GIIN , GIIM = local strain energy release rate contribution upon
mode II due to in-plane loads and bending
moments

L = length of panel
N,M = in-plane loads and bending moment resultants
tfe = equivalent thickness of tapered region of foot

with ply drop-off
U = internal elastic potential energy
UDO;N = internal elastic potential energy due to in-plane

load in drop-off area
UDO;M = internal elastic potential energy due to in bending

in drop-off area
u = in-plane displacement in x direction
w = out-of-plane displacement
wi = generalized coordinates of the displacement

function

’e;i = eccentricity eigenfunctions
’i = beam eigenfunctions
�N = potential of external in-plane loads
�Q = potential of external transverse loads

I. Introduction

I T IS well known that the use of co-cured, co-bonded, and
secondary bonded composite structures offers significant

potential for weight reduction over conventional bolted metallic
designs. The superior performance and competitiveness of carbon
fiber reinforced plastics against conventional metals are due, in part,
to the greater number of parameters that designers can tailor to meet
mission deliverables. If the greater number of variable parameters
increases the degree of adaptability of such structures, then the
tailoring and optimization processes require a deeper level of
understanding and additional computational effort. As a
consequence, there may be a conflict with the restricted time scales
required by the current market trend. With the new era of “total-
carbon design” launched by the novel Airbus A350-XWB and
Boeing 787, the aerospace industry is facing new challenges and a
variety of novel issues are still to be resolved by designers. The
present work focuses its attention on the terminations of composite
stringers bonded to composite skins, and, in particular, on the shape
of discrete assemblies. This design solution offers significant
improvements to manufacturing in terms of cost, time, and ease.
Nevertheless, the vulnerability of such structures to through-
thickness stresses is well known. Stringer run-outs are critical design
areas. The combination of several mechanical and geometrical
parameters, coupled with the lack of complete understanding,
renders the problem difficult and complex. Stiffened panels are core
subcomponents of almost all aircraft components such as wing,
empennage, and fuselage structures. The susceptibility to
interlaminar damage is particularly exacerbated in thick-sectioned
run-out regions that usually characterize wing designs, where
stringers must be run out due to design restrictions. Tapering the
stringer web and running it out at the rib or spar’s flange [1,2] is the
most commonly accepted technique.

The tapered design, illustrated in Fig. 1, guarantees a smoother
mechanical load transfer from the skin to the stringer and is readily
achievable from a manufacturing perspective. Furthermore, the
smoother eccentricity (Fig. 2) of the in-plane loads with respect to
the local neutral plane of the terminated stringer reduces local
bending. Recent studies [3–5] have shown that primary attention
should be given to the skin/stringer bond line at the termination tip,

Presented as Paper 1919 at the 49th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, Schamburg, IL,
7–10 April 2008; received 27 March 2008; revision received 29 September
2008; accepted for publication 18 October 2008. Copyright © 2008 by Enzo
Cosentino and Paul Weaver. Published by the American Institute of
Aeronautics andAstronautics, Inc., with permission. Copies of this papermay
be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0001-1452/09 $10.00 in
correspondence with the CCC.

∗Composite Stress Analysis, Composite Structures Development Centre;
enzo.cosentino@airbus.com.

†Reader, Advanced Composite Centre for Innovation and Science,
Department of Aerospace Engineering, Queens Building 2.39, University
Walk. Member AIAA.

AIAA JOURNAL
Vol. 47, No. 3, March 2009

606

http://dx.doi.org/10.2514/1.37745


as shown in Fig. 3c. Apparently, terminating the stiffener at the rib
or spar’s flange (Fig. 1c) seems to provide partial relief to the pure
peeling stresses triggered at the run-out tip, hence providing a
benefit to the structure.

However, crack initiation due to the pure peeling mode (mode I)
is not necessarily the main cause of failure. Greenhalgh and
Huertas-Garcia [5] have shown, for the analyzed configurations,
that damage initiation was due to a mode I dominated intralaminar
fracture arising at the skin surface (refer to the notation used in
Fig. 1). However, the influence of mode II increased as the crack
front advanced, leading to a mixed mode delamination growth.
Cosentino and Weaver [1] employed the linear elastic fracture
mechanics (LEFM) model developed by Williams [6] in

combination with a nonlinear Ritz-based formulation and a
Galerkin technique to model the eccentricity function, and applied
both submodels to predict crack initiations in simple stringer
termination specimens tested by Falzon and Davies [3].

Such specimens show that there is not a typical failure mode.
Failuremay occur due tomode I, mode II, or amixedmode governed
crack initiation.

The presence of the constraint from the two ribs and adjacent
stringers (Fig. 2) defines the bay in which the stringer is run out. The
combination of material properties and the transverse bending/axial
stiffness proportions between skin and stringer may strongly
influence the sign of the local curvature at the tip datum, thus
triggering (and partitioning accordingly) the loads’ contributions
upon modes I and II and causing any of several possible failure
modes characterized by significantly different failure loads (Figs. 4
and 5).

Because of the eccentricity, the in-plane load induces a local
curvature that, depending on its sign, could produce a peeling
moment that coalesces with pure sliding (mode II). It is noteworthy
that the in-plane load is always present. In fact, the primary load in
wing covers is the local in-plane load due to global bending of the
wings. Its contribution is a significant pure sliding fracture mode.
Nevertheless, the magnitude and the sign of local curvature at the tip,
which determines the size of the local bending moment to be
partitioned, may represent the most important variable. Referring to
Fig. 1 for the typical geometry and to Figs. 4 and 5, the following
conventions are introduced:

Fig. 1 Typical discrete run-out design solution.

Fig. 2 Typical one-bay panel including stringer termination. The boundaries are defined chordwise by the two stringers 1 and 3, and lengthwise by
forward and backward rib datums.

Fig. 3 a) Noodle failure mode, b) lateral failure, and c) tip failure mode.

Fig. 4 Example of initial crack due to a combination of a positive local bending and the in-plane load resultant. The initiation is solelymode II governed.
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1) Positive curvature (Fig. 4): no contribution of mode I is
triggered and the structure shows higher failure loads.

2) Negative curvature (Fig. 5): it is the worst case. The
contribution of mode I is triggered proportionally to the amount of
locally induced curvature. The structure shows appreciably lower
failure loads.

In the present study, it is assumed that the in-plane load triggers the
mode II failure only, and the amount of the mode II excitation does
not depend on the sign (tension of compression). It is also assumed
that the transverse bending moment is potentially able to excite both
modes I and II, and that the mode I component vanishes only in the
case represented in Fig. 4 (positive curvature). The contribution of
mode III to the crack initiation, as well as the effect of the transverse
shear resultant, is neglected. The latter effect in fact does not
significantly contribute to the initial failure as shown in the following
sections.

The assumptions imply that, potentially, three subclasses of failure
work simultaneously: 1) mode I component due to the transverse
secondary bending; 2) mode II component due to the transverse
secondary bending; and 3) mode II component due to the in-plane
load.

Several design solutions have been developed, implemented, and
tested to challenge the failure mechanisms by partially relieving the
local stress concentration. For instance, the first and simpler
proposed solution is schematized in Fig. 6a. Pretensioned bolts are
used to help the tip prevent delamination or disbond due to peeling at
the tip. Unfortunately, formost of the geometries currently in use, the
use of pretensioned bolts cannot mitigate the crack initiation
mechanism, but it can help the structure to provisionally arrest the
crack propagation. This process is due to the endmargin between the
tip edge of the stringer termination and the axes of the last row of
bolts, which is amandatory design requirement. As shown in Fig. 6b,
the area neighboring the tip is not affected by the through-thickness
compressive stresses, which are localized in a small area surrounding

the axes of the bolt. Hence the introduction of bolts is not beneficial to
the structure in delaying the initial failure. Furthermore, bolts are not
capable of relieving the sliding mode. Because of the end margin
policy, significant transfer of the in-plane load happens in the area
closely surrounding the run-out tip, where the bolts have no
influence.

A possible improved version of this solution is shown
schematically in Fig. 7. The use of the doublers could transfer the
through-thickness compression to the tip datum plane, thus reducing
the peeling stresses.

Unfortunately, assuming that the doublers are able to efficiently
transfer the compressive stresses, they are not able to relieve the
mode II components due to both the bending and the in-plane load
resultants. Furthermore, the presence of back-to-back doublers is not
suitable if the lower surface is external (e.g., skin/stringer assemblies
in wings and horizontal/vertical tail planes).

As will be discussed in later sections, to maintain the discrete

design, it is necessary to alter the mechanical and geometrical
parameters to enforce the deformed shape to locally inhibit the
excitement of at least one of the aforementioned failure modes.

As described in Fig. 8, the geometry can be tailored to locate the
run-out tip near the zero-curvature point (Fig. 8b), thus inhibiting the
failure subclasses due to the bending moment resultant.

Although tailoring all parameters could yield considerable
increases in crack initiation loads, it is very difficult to predict the
deformed shape with a reliable degree of confidence. In fact, the high
nonlinearity of the problem, exacerbated especially in compressively
loaded configurations, causes the actual shape to depend on the load
level itself. The tailoring of geometrical and mechanical parameter
needs to thoroughly assess the sensitivity of the deformed shape to
the changes in boundary conditions and in external loads. If the
stringer termination is designed to minimize the bending moment at
the tip edge, the deformed shape needs to guarantee a certain degree
of “stability,” that is, the tip edge needs to be stable close to the

Fig. 5 Example of initial crack due to a combination of a negative local bending and the in-plane load resultant. The initiation is due to an interaction of
modes (mixed modes).

Fig. 6 a) Bolted end design solution and b) effect of pretensioning stresses.
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transition location (Fig. 8b), where the curvature is approximately
zero. Furthermore, in compressive load cases, the stress
concentration around the termination’s tip can lead to local skin
instabilities which could induce buckling of the portion of the skin
facing the tip.

All of the described phenomena can be qualitatively captured by
means of a detailed nonlinear analysis, for example, using the
advanced ABAQUS nonlinear analysis combined with cohesive
elements or the virtual crack closure technique to predict the disbond
[7]. Unfortunately the current degree of reliability and robustness of

such novel techniques in combination with the significant
computational effort renders them not suitable for preliminary
design and sizing purposes, when hundreds of different load cases
need to be analyzed. Therefore, such techniques are suitable for
virtual testing but not for being used as a sizing tool.

In light of the assumptions made (1–3), efforts to improve the
mechanical response and increase the strain allowable are based on
an attempt to partially relieve one of the three failure subclasses by
adding structural components and optimizing the geometry. Further
studies should be carried out to investigate alternative concepts of
stringer termination, which requires more advanced means of
analysis and might be more challenging from a manufacturing point
of view, but this is beyond the scope of this article, which aims at
finding an optimum solution for the discrete design concept.
Nevertheless, it is the authors’ intention to develop more
comprehensive methods of analysis to assess a variety of novel
design solutions.

II. Outline of the Approach

The present study aims at establishing a methodology to predict
static initial failure loads of discrete composite stringer terminations
and derive a series of guidelines for good design of such structures.
The approach consists of two analytical models. The first model is a
nonlinear approach, which provides the stress and displacement field
throughout the domain of interest. This model represents the
structure as a beam. The span length is the length of one single bay
between two adjacent ribs; the maximum width is the foot width Bf .
Effectively, the central strip is analyzed (see Fig. 9) and the in-plane
load acting on the strip is derived as a fraction of the total external
load acting on the panel, according to the total/strip axial stiffness
ratio.

Both the left and the right ribs are assumed to restrain the structure
inhibiting all degrees of freedom. The entire strip is considered to be
isolated from the rest of the structure, meaning that apart from the
ribs, no further mechanical restraints will be assumed in the present
analysis. Geometrical properties and parameters, loads, and
boundary conditions are shown in Fig. 10.

The nonlinear beam model is directly derived from the approach
taken by the authors’ previous work [1]. Expressions collapse to the
one-dimensional case but a new set of base functions is employed to
model the eccentricity to accurately capture the natural boundary
conditions. The new formulation and complete set of equations are
presented in Sec. III. The second model is based on a LEFM
approach first proposed by Williams [6] for one-dimensional beam

Fig. 7 Bolted end design solution with doublers.

Fig. 8 Example of the effect of the termination tip span coordinate on
the induced curvature, that is, on the transverse bending moment at the
tip datum for stringer run-outs.

Fig. 9 Central strip definition: a) general representation; b) cross section.

Fig. 10 Spanwise geometrical parameters.

COSENTINO AND WEAVER 609



analyses, enhanced in the present paper to account for ply drop-off.
Closed form equations are presented to calculate the total strain
energy release rate at the critical interfaces. The total contribution is
then partitioned into its elementary contributions (excitations of
modes I and II). A mode partitioning strategy is proposed to adjust
Williams’s formulation to capture the load sharing between skin and
stringer at the run-out tip. Furthermore, a failure criterion is proposed
[8] to predict crack initiation loads and to evaluate the actual reserve
factor.

The LEFMmodel requires the bending moment and in-plane load
at the run-out tip as input variables. These are calculated bymeans of
the nonlinear beammodel. Solving the nonlinear model results in the
calculation of internal loads throughout the span, noting, however,
that only the loads at the run-out tip are used in the LEFM model.

III. Governing Equations

The use of the modified von Kármán nonlinear approach [1], with
the assumption of a constant in-plane load throughout the domain,
guarantees that the governing equations can be expressed by means
of one variable only, that is, the transverse deflection w. The
membrane strain and the curvature are expressed as functions of the
transverse displacement as follows:
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2
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2w
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(2)

The constitutive equation relating bending moment and curvature
of the laminated beam is

k�� M

�EI� (3)

The beam is subjected to in-plane load N. Furthermore, the effect
of a transverse load per unit length q�x� is included in the model.
Following, for example, Mansfield [9] and Kollar and Springer [10],
the total strain energy U due to bending is
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If the in-plane loads do not vary with x, the in-plane compatibility
equation is identically satisfied and the potential �N of external in-
plane forces is [1,11]
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where e�x� is the neutral plane function (describing eccentricity)
which is treated as a moderately large initial perturbation, and N is
the internal axial force equal to the external applied force. Similarly,
the potential �Q of the transverse load is [11]

�Q ��
Z
lx

0

qw dx (6)

The total potential energy � of the system is therefore

��U��N ��Q (7)

To properly exploit the Rayleigh–Ritz method, approximate
expressions for the unknown variablew and for the eccentricity e are
required. Expressions must satisfy the geometric boundary
conditions. The following truncated series expansion satisfies the
above conditions for transverse displacement and eccentricity:

w�
X�N

i�1
’w;iwi (8)
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j�1
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The adopted shape functions ’w;i are the solutions of Euler’s
column buckling for a clamped/clamped beam [1]:

’w;i�x� � a1;i � b1;ix� c1;i sin�1;ix� d1;i cos�1;ix (10)

where

a1;i ��1 (11a)
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(11b)
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(11c)

d1;m � 1 (11d)

The quantities �1;i are the roots of the following transcendental
equation:
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The shape functions ’e;i adopted to model the eccentricity are the
eigenfunctions of a beam, which is clamped at x� L and free at
x� 0:
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Coefficients ei of the generalized series expansion are obtained by
means of a Galerkin technique [1].

Substituting Eqs. (8) and (9) into Eqs. (4–6) the total potential is

expressed as a second-order polynomial of the �N unknown
coefficients wi. Expressions for U, �N , and �Q are described as
follows:
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The principle of stationary potential energy states that

@�

@wi
� 0; 8 i� 1; . . . ; �N (17)

Equations (14–16) are now substituted into Eq. (17)with the result
differentiated with respect to wi. Algebraic manipulations result in

the following linear system of �N equations in the �N unknowns wi,
i� 1; . . . ; �N:

�G�H�W �� �HE�Q (18)

Vectors Q, E and matrices G, H, and �H are defined as

Q i �
Z
L

0

q�i dx dy (19)

E � � e1 e2 . . . eM�N �T (20)

�G�ij �
Z
L

0

�EI� d
2’w;i
dx2

d2’w;j
dx2

dx (21)

�H�ij � N
Z
L

0

d’w;i
dx

d’w;j
dx

dx (22)

� �H�ij � N
Z
L

0

d’w;i
dx

d’e;j
dx

dx (23)

The system described by Eq. (18) is invertible and yields the �N
coefficients wi, which completely describe the state of stress and
strain throughout the domain. The truncation causes an error, which
is negligible if the number N of eigenfunctions used is reasonably
large and guarantees the convergence of the approximate solution.

In general, for linear problems involving only transverse

displacements due to external transverse loads, �N � 5 guarantees

excellent convergence and degree of accuracy. For the present case,
the presence of geometrical nonlinearities in conjunction with the
discontinuity of the eccentricity extends the convergence threshold
to a larger number of eigenfunctions, typically between 10 and 20
terms are required. An example of the calculation procedure is given
and results are compared with a two-dimensional nonlinear finite
element analysis (FEM). With reference to Figs. 9 and 10, geometry
and material properties used are reported in Table 1. The series

expansion was truncated at �N � 20. Out-of-plane displacements,
rotations, and bending moments are compared and comparisons are
shown in Fig. 11. The in-plane external load applied is F� 10 kN.
Results show excellent correlation with FEM.

IV. Disbond Model

The disbond model is based on the theory first developed by
Williams [6]. Several studies [1,12,13] have proven that the model is
suitable for fast and reliable prediction of crack initiation. An
analytical approach is fully developed to further improve the disbond
model to allow for the calculation of the internal and external works
when a stiffness gradient is present instead of an abrupt discontinuity
(e.g., ply drop-offs, see Fig. 12).

The effect of tapering the foot tip is represented by replacing the
tapered area with a foot termination of constant thickness and

Table 1 Geometry and average elastic moduli

Es, MPa 94,125
Ew, MPa 107,550
Ef, MPa 107,550
Bf , mm 70
L, mm 1,000
hwi, mm 45
hw, mm 6
ts, mm 8
tf, mm 4
tw, mm 8
Xw, mm 300
Xf , mm 400
�w, deg 30
�f, deg 5

Fig. 11 Spanwise correlation. a) Transverse displacement w; b) section rotation; c) bending moment; nonlinear (NL).

Fig. 12 Schematization of ply drop-offs.
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equivalent elastic modulus. Rationales for calculation of equivalent
section properties are given in Appendix A. It is assumed that the
critical location is the skin/foot bond line at the foot tip, where
contributions to the local strain energy release rate due to the bending
moment and in-plane load are expressed below for configurations
with and without ply drop-offs. The presence of residual foot
thickness tf;r is included in the model. Strain energy release rates
given in Appendix A, are

GMI �
�Mf ��Ms�2
2B�1���2

�
1

�EI�f
� 1

�EI�s

�
(24a)

GMII �
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2B�1���2

�
1

�EI�f
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�EI�s
� �1���2
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�
(24b)

GFI � 0 (25a)
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(25b)
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1
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(26a)
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(26b)
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F2

2B

�
1

�EA�s
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�EA�tot;e

�
(27b)

A series of four point bending tests were conducted to validate the
method and understand and quantify the benefit obtained by making
use of the ply drop-off design. The test rig is depicted in Fig. 13. Test
specimens are sketched in Fig. 14 and the test matrix is reported in
Table 2. Skin and flange are co-bonded. Specimen’s geometry is
reported in Fig. 15. Material properties used for T700/M21
134 g=m2 are as follows: EL � 119; 680 MPa; ET � 8500 MPa;
GLT � 4500 MPa; and �LT � 0:32. A total of 16 tests were
performed. Two batches of four specimens were tested per each
configuration.

Comparisons with tests are reported in Tables 3–5. It is noted that
the model’s predictions match test data closely. It is emphasized that
a significant increase in failure loads can be obtained by taking
advantage of ply drop-offs. The failure criterion used to predict
failure is a quadratic power law [1] given by�

Gtot;I

GI;C

�
2

�
�
Gtot;II

GII;C

�
2

� 1 (28)

Fig. 13 Test fixture and final failure of four-points bending specimen.

Fig. 14 Test configurations: a) baseline; b) ply drop-off.

Fig. 15 Specimen dimensions: a) baseline; b) ply drop-off.

Table 2 Test matrix

No. of tests

Configuration 1
Baseline 4

Ply drop-off 4

Configuration 2
Baseline 4

Ply drop-off 4

Table 3 Specimen configurations

Nominal ply thickness: 0.13 mm Configuration 1 stacking sequences Configuration 2 stacking sequences

Skin �90=45=0= � 45= � 45=0=45=0� s �45=90= � 45=0= � 45=0=45=0� s
Flange �90=45=0=0= � 45=0=0� s �45=0= � 45=0=90=0=0� s

Table 4 Comparison with tests results: Configuration 1

Configuration 1 Testa (mean values, four specimens) Analyticala

Baseline 1 0.88
Ply drop-off 1.32 1.28

aResults divided by the mean value of the baseline batch.

Table 5 Comparison with tests results: Configuration 2

Configuration 2 Testa (mean values, four specimens) Analyticala

Baseline 1 0.98
Ply drop-off 1.49 1.35

aResults divided by the mean value of the baseline batch.
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V. Model Validation

To validate the accuracy of the present model, five configurations
were analyzed and results were compared with nonlinear FEM using
ABAQUS [7]. Average elastic moduli were used for the skin, the
stringer, and the foot. Boundary conditions are reported in Figs. 10
and 16. The specimen with the stringer terminated at midbay was
taken as baseline. To evaluate the effect of terminating the stringer at
different locations along the span, stringers in configurationsA,B,C,
and D (see Fig. 17) are terminated at 15, 35, 65, and 85% of the bay
length, respectively. Virtual specimens were tested both in tension
and in compression. Virtual specimens are briefly sketched in
Figs. 16 and 17. Figure 18 shows details of the mesh used locally to
model the bond line with cohesive elements (COH3D8).
Geometrical and material properties are the same as reported in
Table 1. Values used for critical strain energy release rates are as
follows: G1c � 250 J=m2 and G2c � 1100 J=m2. Results are
compared in Table 6. Rationales on the application of the LEFM
model at the run-out tip are provided in Appendix B.

Results show fairly good correlation between the present model
and ABAQUS predictions. The discrepancy found for
configuration A can be attributed to the failure predicted by the
FEM at the corner of the foot. The present method is based on a one-
dimensional strip analysis and therefore it cannot capture failure
modes due to local effects such as stress concentration at free corners.

VI. Conclusions

A robust and efficient method for a quick evaluation of stringer
run-outs critical failure mode is presented. Comparison with detailed
FEM shows that the method is reasonably accurate. Despite
limitations due to one-dimensional assumptions, failure modes are
well captured by the model. The proposed approach provides
significantlymore efficient analysis of the fracture of stiffened panels
than those others commonly used. If used for industrial purposes, its
accuracy must and can be improved by taking into account the effect
of the second dimension (which causes biaxial loadings that cannot
be accounted for by the present analysis) to fit with test results, and
also defining knockdown factors to render the predictions
conservative for all the comparisons. The approach typically works
well for stiffened panels with symmetric stiffeners for which there is
an abrupt run-out or a ply drop-off. The main limitations of the
analysis are as follows:

1) The method schematizes the panel as a beam. Only axial load
(parallel to stringer direction) and transverse pressure can be applied.
Biaxial and in-plane loading contributions are not represented.

2) Only open-sectioned stringers are considered (e.g., T or L
stringers). Closed sections, such as trapezoidal stringers, are not yet
represented by the present method.

3) Only classical discrete configurations are modeled. Integral
stringer concept or internal pad-ups cannot be modeled by means of
the present analysis.

4) Stress concentrations due to the free edge of the stringer foot or
corner effect as well as uneven stress distribution along the very tip
edge are not accounted for. Empirical knockdown factors could be
derived from tests and used to render the method conservative.

Appendix A: Ply Drop-Off Analytical Formulation

To account for ply drop-off, local strain energies [1,6]UDO;M and
UDO;N of the drop-off area (Fig. A1d) are calculated under two
different assumptions: constant strain and constant curvature
(Figs. A1e andA1f, respectively). Results are then compared to local
strain energies UM and UN of a configuration without ply drop-off
(Fig. A1a), calculated over the same region and under identical
assumptions, that is, same constant curvature and longitudinal strain
(Figs. A1b and A1c, respectively). Hence correction factors CM and
CN are derived for strain energy and external work done by moment
and in-plane load.

The total strain energy stored in the drop-off region under the
assumption of a constant curvature k is

UDO;M �
1

2

Z
lDO

0

k2EfI�x� dx�
1

8

k2EfB

12 tan��� �t
4
f � t4r� (A1)

The total strain energy stored in the drop-off region under the
assumption of a constant axial strain " is

UDO;N �
1

2

Z
lDO

0

"2EfA�x� dx�
1

4

"2EfB

tan��� �t
2
f � t2r� (A2)

Fig. 16 Baseline specimen; dimensions are given in millimeters.

Fig. 17 Virtual specimens; dimensions are given in millimeters.

Fig. 18 ABAQUS model. Local mesh at the run-out tip.

COSENTINO AND WEAVER 613



The total strain energies stored in the reference configuration under
the assumptions of constant curvature k and constant axial strain " are

UM �
1

2

Z
lDO

0

k2EfI dx�
1

2

k2EfB

12
t3flDO (A3)

UN �
1

2

Z
lDO

0

"2EfA dx� 1

2
"2EfBtflDO (A4)

Defining the following correction factors:

CM �
UDO;M

UM
� 1

4

t4f � t4r
t3f�tf � tr�

(A5)

CN �
UDO;N

UN
� 1

2
�tf � tr� (A6)

one can express strain energy stored in the drop-off region as a
fraction of the strain energy stored in the reference configuration:

UDO;M � CMUM (A7)

UDO;N � CNUN (A8)

Two parameters tf;e and Ef;e are introduced to define an equivalent
beam (Fig. A1g). The parameters are determined by imposing the
condition that the total strain energies stored in the equivalent beam
undergoing the same constant curvature (Ue;M) and axial strain
(Ue;N) equal UDO;M and UDO;N , respectively,

Ue;M � CMUM (A9)

Ue;N � CNUN (A10)

Ue;M and Ue;N are (Figs. A1h and A1i) calculated as follows:

Ue;M �
1

2

Z
lDO

0

k2Ef;eIe dx�
1

2

k2Ef;eB

12
t3f;elDO (A11)

UN �
1

2

Z
lDO

0

"2EfAe dx�
1

2
"2Ef;eBtf;elDO (A12)

Substituting Eqs. (A5) and (A6) into Eqs. (A9) and (A10) and then
into Eqs. (A11) and (A12), the following relations are derived for
equivalent bending and axial stiffness:

�EI�f;e � CM�EI�f (A13)

�EA�f;e � CN�EA�f (A14)

Equivalent thickness and elastic modulus are then calculated as
follows:

Ef;e �
1

2
���
3
p
B
�CM��1=2�CN�3=2

�������������
�EA�f
�EI�f

s
�EAf� (A15)

tf;e � 2
���
3
p
�CM�1=2�CN�1=2

�������������
�EI�f
�EA�f

s
(A16)

Strain energy release rates due to bending moment and in-plane load
[1,6] are expressed as (see Fig. 12)

GMI �
�Mf;e ��eMs�2
2B�1��e�2

�
1

�EI�f;e
� 1

�EI�s

�
(A17a)

GMII �
�Mf;e �Ms�2
2B�1��e�2

�
1

�EI�f;e
� �2

e

�EI�s
� �1��e�2
�EI�tot;e

�
(A17b)

GFI � 0 (A18a)

GFII �
F2

2B

�
1

�EA�s
� 1

�EA�tot;e

�
(A18b)

where

�e �
�EI�s
�EI�f;e

(A19)

Table 6 Results comparison

Failure loads (crack initiation), kN

Configuration Tension Compression

ABAQUS Present ABAQUS Present

A 652 600 691 594
B 591 594 629 595

Baseline 551 576 548 578
C 560 521 574 537
D 549 516 563 534

Fig. A1 Drop-off area idealization.

614 COSENTINO AND WEAVER



Quantities �EA�0;e and �EI�0;e are calculated according to the
geometry shown in Fig. A2, once Ef;e and tf;e are known.

Appendix B: Modal Contributes Partitioning

To proper employ the disbond model, an appropriate partition of
load is required. Referring to the free-body schemes in Fig. B1, the
loads exchanged between the overlap section (skin/foot) and the skin
can be partitioned into three distinct components.

1)Mr, due to local curvature of the skin, is exchanged between the
two sections and acts only on the lower adherend of the joint (skin
part).

2) N, due to the external in-plane load acting on the lower
adherend of the joint (skin part). It is introduced from the skin into the
skin–stringer region.

3) The discontinuous increment�M, due to the local eccentricity.
It acts on the whole overlap section only.

The in-plane loadN triggers mode II excitation only. Referring to
Williams [6], mode partitioning is obtained as

GNI � 0 (B1a)

GNII �
N2

2B

�
1

�EA�s
� 1

�EA�tot

�
(B1b)

where

�EA�tot � �EA�s � �EA�f (B2)

or, in the case of ply drop-off:

GNI � 0 (B3a)

GNII �
N2

2B

�
1

�EA�s
� 1

�EA�tot;e

�
(B3b)

where

�EA�tot; e� �EA�s � �EA�f;e (B4)

The bending moment due to local eccentricity �M triggers mode II
excitation only. Referring to Williams [6] and Dahlen and Springer
[13], mode partitioning is obtained as

G�M
I �

��Ms ���Mf�2
2B�1���2

�
1

�EI�f
� 1

�EI�s

�
(B5a)

G�M
II �

��Ms ��Mf�2
2B�1���2

�
1

�EI�f
� �2

�EI�s
� �1���2
�EI�tot

�
(B5b)

or, in the case of ply drop-off:

G�M
I �

��Ms ��e�Mf�2
2B�1��e�2

�
1

�EI�f;e
� 1

�EI�s

�
(B6a)

G�M
II �

��Ms ��Mf�2
2B�1��e�2

�
1

�EI�f;e
� �2

e

�EI�s
� �1��e�2
�EI�tot;e

�
(B6b)

It is assumed that after the initial virtual crack da (Fig. B2), the
bending moments are partitioned between the skin and the foot
proportionally to their bending stiffnesses. Upper (foot) and lower
(skin) components can be derived assuming that both parts have the
same curvature after crack initiation, and applying the bending
moment equilibrium of the free body

�Mf ��Ms ��Mtot (B7a)

�Mf

�EI�f
� �Ms

�EI�s
(B7b)

or, in the case of ply drop-off

�Mf ��Ms ��Mtot (B8a)

Fig. A2 Local idealization.

Fig. B1 Local free bodies.
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�Mf

�EI�f;e
� �Ms

�EI�s
(B8b)

Substituting Eqs. (B7b) and (B8b) into Eqs. (B5a) and (B6a) yields a
zero mode I excitation.

Local bendingMr due to skin curvature can either trigger mode II
excitation only or amixedmode contribution. Referring to Fig. B3, if
the local curvature of the skin at the run-out tip is negative (Figs. B3a
and B3b), only mode I and mode II contributions are present. If the
local curvature of the skin at the run-out tip is positive (Figs. B3c and
B3d), only a mode II contribution is present.

In the case of negative curvature, contributions are

GMr
I �

�Mr;s ��Mr;f�2
2B�1���2

�
1

�EI�f
� 1

�EI�s

�
(B9a)

GMr
II �

�Mr;f �Mr;s�2
2B�1���2

�
1

�EI�f
� �2

�EI�s
� �1���2
�EI�tot

�
(B9b)

or, in the case of ply drop-off

GMr
I �

�Mr;s ��eMr;f�2
2B�1��e�2

�
1

�EI�f;e
� 1

�EI�s

�
(B10a)

GMr
II �

�Mr;f �Mr;s�2
2B�1��e�2

�
1

�EI�f;e
� �2

e

�EI�s
� �1��e�2
�EI�tot;e

�
(B10b)

where

Mr;s �Mr;0 (B11a)

Mr;f � 0 (B11b)

In the case of positive curvature, assumptions made for �M still
hold; hence expressions for mode partitioning are

GMr
I �

�Mr;s ��Mr;f�2
2B�1���2

�
1

�EI�f
� 1

�EI�s

�
(B12a)

GMr
II �

�Mr;f �Mr;s�2
2B�1���2

�
1

�EI�f
� �2

�EI�s
� �1���2
�EI�tot

�
(B12b)

or, in the case of ply drop-off

GMr
I �

�Mr;s ��eMr;f�2
2B�1��e�2

�
1

�EI�f;e
� 1

�EI�s

�
(B13a)

GMr
II �

�Mr;f �Mr;s�2
2B�1��e�2

�
1

�EI�f;e
� �2

e

�EI�s
� �1��e�2
�EI�tot;e

�
(B13b)

where

Mr;f �Mr;s �Mr;o (B14a)

Mr;f

�EI�f
��Mr;s

�EI�s
(B14b)

or, in the case of ply drop-off

Mr;f �Mr;s �Mr;o (B15a)

Mr;f

�EI�f;e
��Mr;s

�EI�s
(B15b)

Again, substituting Eqs. (B14b) and (B15b) into Eqs. (B12a) and
(B13a) yields a zero mode I excitation.
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